Author:
Johnson Raymond F.,Herman Norman,Arney Timothy L.,Gonzalez Herbert,Johnson Vernetta H.,Downing John W.
Abstract
Background
Bupivacaine is widely used for obstetric analgesia, yet published information on the mechanism of human placental bupivacaine transfer is sparse. The dual perfused human placental model was used to elucidate the factors governing the placental transfer of bupivacaine.
Methods
Bupivacaine transfer was studied using the recirculating (closed) model and the single pass (open) model. Single placental cotyledons were perfused with either heparinized Krebs-Ringer's buffer (KRB) supplemented with human albumin (fetal and maternal circuits) or 100% fresh frozen plasma (maternal circuit) to control the bupivacaine protein binding in those circuits. In the open model, bupivacaine clearance was compared before and after being subjected to either increasing concentrations of bupivacaine or its structural analog, mepivacaine.
Results
For those studies in which the maternal and fetal protein binding was equal, the maternal to fetal (M-->F) transfer was significantly greater (P < 0.05) than that in the fetal to maternal (F-->M) direction. When the perfusates were modified to simulate actual in vivo plasma protein concentrations, bupivacaine transfer was shown to be related to the degree of protein binding found in the two circuits. In the open studies, bupivacaine transfer was similar at all concentrations investigated, unaffected by mepivacaine, and related to the pH of the fetal perfusate. A concentration effect was seen within the placental tissue at the end of the experiment.
Conclusions
Bupivacaine placental transfer characteristics suggest passive diffusion rather than active drug transport and appear to be influenced by the maternal and fetal plasma protein binding, fetal pH, and placental uptake.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献