Optimal Mean Airway Pressure during High-frequency Oscillation

Author:

Goddon Sven1,Fujino Yuji1,Hromi Jonathan M.2,Kacmarek Robert M.3

Affiliation:

1. Research Fellow.

2. Research Technologist, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School.

3. Associate Professor, Department of Anesthesia and Critical Care, Harvard Medical School, Director, Respiratory Care Department, Massachusetts General Hospital.

Abstract

Background A number of groups have recommended setting positive end-expiratory pressure during conventional mechanical ventilation in adults at 2 cm H2O above the lower corner pressure (P(CL)) of the inspiratory pressure-volume (P-V) curve of the respiratory system. No equivalent recommendations for the setting of the mean airway pressure (Paw) during high-frequency oscillation (HFO) exist. The authors questioned if the Paw resulting in the best oxygenation without hemodynamic compromise during HFO is related to the static P-V curve in a large animal model of acute respiratory distress syndrome. Methods Saline lung lavage was performed in seven sheep (28+/-5 kg, mean +/- SD) until the arterial oxygen partial pressure/fraction of inspired oxygen ratio decreased to 85+/-27 mmHg at a positive end-expiratory pressure of 5 cm H2O (initial injury). The PCL (20+/-1 cm H2O) on the inflation limb and the point of maximum curvature change (PMC; 26+/-1 cm H2O) on the deflation limb of the static P-V curve were determined. The sheep were subjected to four 1-h cycles of HFO at different levels of Paw (P(CL) + 2, + 6, + 10, + 14 cm H2O), applied in random order. Each cycle was preceded by a recruitment maneuver at a sustained Paw of 50 cm H2O for 60 s. Results High-frequency oscillation with a Paw of 6 cm H2O above P(CL) (P(CL) + 6) resulted in a significant improvement in oxygenation (P < 0.01 vs. initial injury). No further improvement in oxygenation was observed with higher Paw, but cardiac output decreased, pulmonary vascular resistance increased, and oxygen delivery decreased at Paw greater than P(CL) + 6. The PMC on the deflation limb of the P-V curve was equal to the P(CL) + 6 (r = 0.77, P < 0.05). Conclusion In this model of acute respiratory distress syndrome, optimal Paw during HFO is equal to P(CL) + 6, which correlates with the PMC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3