Abstract
Abstract
Background
The role of high-frequency oscillatory ventilation (HFOV) has long been debated. Numerous studies documented its benefits, whereas several more recent studies did not prove superiority of HFOV over protective conventional mechanical ventilation (CV). One of the accepted explanations is that CV and HFOV act differently, including gas exchange.
Methods
To investigate a different level of coupling or decoupling between oxygenation and carbon dioxide elimination during CV and HFOV, we conducted a prospective crossover animal study in 11 healthy pigs. In each animal, we found a normocapnic tidal volume (VT) after the lung recruitment maneuver. Then, VT was repeatedly changed over a wide range while keeping constant the levels of PEEP during CV and mean airway pressure during HFOV. Arterial partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) were recorded. The same procedure was repeated for CV and HFOV in random order.
Results
Changes in PaCO2 intentionally induced by adjustment of VT affected oxygenation more significantly during HFOV than during CV. Increasing VT above its normocapnic value during HFOV caused a significant improvement in oxygenation, whereas improvement in oxygenation during CV hyperventilation was limited. Any decrease in VT during HFOV caused a rapid worsening of oxygenation compared to CV.
Conclusion
A change in PaCO2 induced by the manipulation of tidal volume inevitably brings with it a change in oxygenation, while this effect on oxygenation is significantly greater in HFOV compared to CV.
Funder
České Vysoké Učení Technické v Praze
Univerzita Karlova v Praze
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献