Intravenous Anesthetics Differentially Modulate Ligand-gated Ion Channels

Author:

Flood Pamela,Krasowski Matthew D.

Abstract

Background Heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) are potently inhibited by volatile anesthetics, but it is not known whether they are affected by intravenous anesthetics. Ketamine potentiates gamma-aminobutyric acid type A (GABAA) receptors at high concentrations, but it is unknown whether there is potentiation at clinically relevant concentrations. Information about the effects of intravenous anesthetics with different behavioral profiles on specific ligand-gated ion channels may lead to hypotheses as to which ion channel effect produces a specific anesthetic behavior. Methods A heteromeric nAChR composed of alpha4 and beta4 subunits was expressed heterologously in Xenopus laevis oocytes. Using the two-electrode voltage clamp technique, peak ACh-gated current was measured before and during application of ketamine, etomidate, or thiopental. The response to GABA of alpha1beta2gamma2s GABAA receptors expressed in human embryonic kidney cells and Xenopus oocytes was compared with and without coapplication of ketamine from 1 microm to 10 mm. Results Ketamine caused potent, concentration-dependent inhibition of the alpha4beta4 nAChR current with an IC50 of 0.24 microm. The inhibition by ketamine was use-dependent; the antagonist was more effective when the channel had been opened by agonist. Ketamine did not modulate the alpha1beta2gamma2s GABAA receptor response in the clinically relevant concentration range. Thiopental caused 27% inhibition of ACh response at its clinical EC50. Etomidate did not modulate the alpha4beta4 nAChR response in the clinically relevant concentration range, although there was inhibition at very high concentrations. Conclusions The alpha4beta4 nAChR, which is predominantly found in the central nervous system (CNS), is differentially affected by clinically relevant concentrations of intravenous anesthetics. Ketamine, commonly known to be an inhibitor at the N-methyl-D-aspartate receptor, is also a potent inhibitor at a central nAChR. It has little effect on a common CNS GABAA receptor in a clinically relevant concentration range. Interaction between ketamine and specific subtypes of nAChRs in the CNS may result in anesthetic behaviors such as inattention to surgical stimulus and in analgesia. Thiopental causes minor inhibition at the alpha4beta4 nAChR. Modulation of the alpha4beta4 nAChR by etomidate is unlikely to be important in anesthesia practice based on the insensitivity of this receptor to clinically used concentrations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference29 articles.

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3