s-ketamine enhances thalamocortical and corticocortical synaptic transmission in acute murine brain slices via increased AMPA-receptor-mediated pathways

Author:

Bieber Matthias,Schwerin Stefan,Kreuzer Matthias,Klug Claudia,Henzler Marie,Schneider Gerhard,Haseneder Rainer,Kratzer Stephan

Abstract

Despite ongoing research efforts and routine clinical use, the neuronal mechanisms underlying the anesthesia-induced loss of consciousness are still under debate. Unlike most anesthetics, ketamine increases thalamic and cortical activity. Ketamine is considered to act via a NMDA-receptor antagonism-mediated reduction of inhibition, i.e., disinhibition. Intact interactions between the thalamus and cortex constitute a prerequisite for the maintenance of consciousness and are thus a promising target for anesthetics to induce loss of consciousness. In this study, we aim to characterize the influence of s-ketamine on the thalamocortical network using acute brain-slice preparation. We performed whole-cell patch-clamp recordings from pyramidal neurons in cortical lamina IV and thalamocortical relay neurons in acute brain slices from CB57BL/6N mice. Excitatory postsynaptic potentials (EPSPs) were obtained via electrical stimulation of the cortex with a bipolar electrode that was positioned to lamina II/III (electrically induced EPSPs, eEPSPs) or via optogenetic activation of thalamocortical relay neurons (optogenetically induced EPSPs, oEPSPs). Intrinsic neuronal properties (like resting membrane potential, membrane threshold for action potential generation, input resistance, and tonic action potential frequency), as well as NMDA-receptor-dependent and independent spontaneous GABAA-receptor-mediated inhibitory postsynaptic currents (sIPSCs) were evaluated. Wilcoxon signed-rank test (level of significance < 0.05) served as a statistical test and Cohen’s U3_1 was used to determine the actual effect size. Within 20 min, s-ketamine (5 μM) significantly increased both intracortical eEPSPs as well as thalamocortical oEPSPs. NMDA-receptor-mediated intracortical eEPSPs were significantly reduced. Intrinsic neuronal properties of cortical pyramidal neurons from lamina IV and thalamocortical relay neurons in the ventrobasal thalamic complex were not substantially affected. Neither a significant effect on NMDA-receptor-dependent GABAA sIPSCs (thought to underly a disinhibitory effect) nor a reduction of NMDA-receptor independent GABAA sIPSCs was observed. Both thalamocortical and intracortical AMPA-receptor-mediated EPSPs were significantly increased.In conclusion, our findings show no evidence for a NMDA-receptor antagonism-based disinhibition, but rather suggest an enhanced thalamocortical and intracortical synaptic transmission, which appears to be driven via increased AMPA-receptor-mediated transmission.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Developmental Neuroscience,Neuroscience (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3