Accuracy of a Cerebral Oximeter in Healthy Volunteers under Conditions of Isocapnic Hypoxia

Author:

Henson Lindsey C.,Calalang Carolyn,Temp John A.,Ward Denham S.

Abstract

Background A cerebral oximeter measures oxygen saturation of brain tissue noninvasively by near infrared spectroscopy. The accuracy of a commercially available oximeter was tested in healthy volunteers by precisely controlling end-tidal oxygen (P[ET]O2) and carbon dioxide (P[ET]CO2) tensions to alter global cerebral oxygen saturation. Methods In 30 healthy volunteers, dynamic end-tidal forcing was used to produce step changes in P[ET]O2 resulting in arterial saturation ranging from approximately 70% to 100% under conditions of controlled normocapnia (each person's resting P[ET]CO2) or hypercapnia (resting plus 7-10 mmHg). Blood arterial (SaO2) and jugular bulb venous (S[jv]O2) saturations during each P(ET)O2 interval were determined by co-oximetry. The cerebral oximeter reading (rSO2) and an estimated jugular venous saturation (S[jv]O2), derived from a combination of SaO2 and rSO2, were compared with the measured S(jv)O2. Results The S(jv)O2 was significantly higher with hypercapnia than with normocapnia for the same SaO2. The rSO2 and S(jv)O2 were both highly correlated with S(jv)O2 for individual volunteers (mean r2 = 0.91 for each relation); however, the slopes and intercepts varied widely among volunteers. In three of them, the cerebral oximeter substantially underestimated the measured S(jv)O2. Conclusions During isocapnic hypoxia in healthy persons, cerebral oxygenation as estimated by near infrared spectroscopy precisely tracks changes in measured S(jv)O2 within individuals, but the relation exhibits a wide range of slopes and intercepts. Therefore the clinical utility of the device is limited to situations in which tracking trends in cerebral oxygenation would be acceptable.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3