Quantification of Efavirenz Hydroxymetabolites in Human Plasma Using LC-HRMS/MS

Author:

Pettersson Bergstrand Madeleine12,Soeria-Atmadja Sandra34,Barclay Victoria12,Tolic Jelena1,Navér Lars34,Gustafsson Lars L.2,Pohanka Anton12

Affiliation:

1. Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden;

2. Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden;

3. Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden; and

4. Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.

Abstract

Background: Efavirenz (EFV) is a drug used to treat HIV. Low plasma concentrations of EFV result in suboptimal viral suppression, whereas high concentrations can cause adverse neuropsychiatric side reactions. Some studies have identified a correlation between the plasma concentrations of EFV metabolites and neurotoxicity. To our knowledge, no studies have investigated the metabolism of EFV in young children and its effect on treatment outcomes. Therefore, the aim of this study was to develop and validate a method for quantifying EFV and its metabolites in human plasma derived from children. Methods: Sample preparation was performed using protein precipitation of 100 µL plasma. Thereafter, an aliquot of the supernatant was used to quantify EFV, 7-hydroxyefavirenz (7-OH-EFV), 8-hydroxyefavirenz (8-OH-EFV), and a newly discovered metabolite (“EFAdeg”) associated with 8-OH-EFV. A second aliquot of the supernatant was hydrolyzed using β-glucuronidase/arylsulfatase and used with the first aliquot to quantify phase II metabolites. The analyses were performed using a Dionex Ultimate 3000RS LC-system coupled with a Q Exactive Orbitrap mass spectrometer. Results: The method has a measuring range of 100–50,000 ng/mL (EFV, 8-OH-EFV), 125–25,000 ng/mL (7-OH-EFV), and 200–10,000 ng/mL (“EFAdeg”). All criteria of the European Medicines Agency guidelines regarding precision, accuracy, and selectivity were met. Of note, carryover must be considered for 8-OH-EFV. Overall, the validated method was successfully applied to plasma samples obtained from children and confirmed the presence of the newly discovered metabolite, “EFAdeg.” Conclusions: An LC-HRMS/MS method for the quantification of EFV and its phase I and II metabolites was developed and validated. This method is suitable for analyzing plasma samples from children. Furthermore, studies using this method identified an additional metabolite that may influence the concentration of 8-OH-EFV in patient samples.

Funder

Stockholms Läns Landsting

Swedish Order of Freemason Foundation for Children

Stiftelsen Samariten

Stiftelsen Sven Jerrings Fond

Karolinska Institutet

Vetenskapsrådet

Holmia

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3