Comparison of biometry measurements and intraocular lens power prediction between 2 SS‐OCT–based biometers

Author:

Sorkin NirORCID,Zadok Tal,Barrett Graham D.,Chasid OtzemORCID,Abulafia AdiORCID

Abstract

Purpose: To evaluate the agreement in biometry measurements and intraocular lens (IOL) power prediction between the Eyestar 900 and the IOLMaster 700. Setting: Institutional. Design: Retrospective comparative study. Methods: Patients were evaluated before cataract surgery using both devices on the same visit. Axial length, anterior and posterior keratometry, anterior chamber depth, corneal diameter (CD), central corneal thickness, and lens thickness were recorded by both devices. The agreement in measurements and in IOL power calculations was evaluated using the Barrett Universal II (BU-II) formula with either predicted or measured posterior keratometry. Results: In total, 402 eyes of 402 consecutive patients were included. The mean age was 72.0 ± 9.2 years. Clinically, mean differences in measured variables were small, albeit slightly larger for posterior flat and steep keratometry (0.43 diopters [D] and 0.42 D, respectively). The measurement correlation and agreement between the devices were good for all variables with slightly lower agreement in CD measurements. Consistent bias was seen in measurements of posterior flat and steep keratometry. Good agreement was also found in anterior and posterior astigmatism measurements. Good IOL power calculation agreement was found using either predicted posterior keratometry (95% limits of agreement [LoA] of −0.40 to +0.30 D) or measured posterior keratometry (95% LoA of −0.45 to +0.40 D). The agreement was within ±0.5 D in 394 eyes (98.0%) using predicted posterior keratometry and in 386 eyes (96.0%) using measured posterior keratometry. Conclusions: The Eyestar 900 and the IOLMaster 700 show strong agreement in biometry measurements and IOL power prediction by the BU-II formula using either standard or total corneal keratometry and can be used interchangeably.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Sensory Systems,Ophthalmology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3