Noninvasive methods to monitor intracranial pressure

Author:

Dattilo Michael

Abstract

Purpose of review Intracranial pressure (ICP) is determined by the production of and outflow facility of cerebrospinal fluid. Since alterations in ICP are implicated in several vision-threatening and life-threatening diseases, measurement of ICP is necessary and common. All current clinical methods to measure ICP are invasive and carry the risk for significant side effects. Therefore, the development of accurate, reliable, objective, and portal noninvasive devices to measure ICP has the potential to change the practice of medicine. This review discusses recent advances and barriers to the clinical implementation of noninvasive devices to determine ICP. Recent findings Many noninvasive methods to determine ICP have been developed. Although most have significant limitations limiting their clinical utility, several noninvasive methods have shown strong correlations with invasively obtained ICP and have excellent potential to be developed further to accurately quantify ICP and ICP changes. Summary Although invasive methods remain the mainstay for ICP determination and monitoring, several noninvasive biomarkers have shown promise to quantitatively assess and monitor ICP. With further refinement and advancement of these techniques, it is highly possible that noninvasive methods will become more commonplace and may complement or even supplant invasively obtained methods to determine ICP in certain situations.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Neurology

Reference142 articles.

1. Disorders of CSF hydrodynamics;Johnston;Childs Nerv Syst,2000

2. Anatomy and physiology of cerebrospinal fluid;Sakka;Eur Ann Otorhinolaryngol Head Neck Dis,2011

3. Relationship between cerebrospinal fluid (CSF) formation, absorption and pressure in human hydrocephalus;Watters;Trans Am Neurol Assoc,1969

4. Cerebrospinal fluid circulation, cerebral edema, and intracranial pressure;Williams;Curr Opin Neurol,1993

5. Clinical and experimental intracranial pressure;Kuurne;Eur Neurol,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3