Qualitative Evaluation of Intracranial Pressure Slopes in Patients Undergoing Brain Death Protocol

Author:

Ideta Mylena Miki Lopes1,Oliveira Louise Makarem2,Gonçalves Daniel Buzaglo1ORCID,Paschoalino Mylla Christie1,Carvalho Nise Alessandra Carvalho1,Della Coletta Marcus Vinicius3,Paiva Wellingson4,Brasil Sérgio4,Amorim Robson Luís Oliveira de14ORCID

Affiliation:

1. Department of Internal Medicine, Federal University of Amazonas, Manaus 69077, ZIP, Brazil

2. Department of Neurology, University of São Paulo, Ribeirão Preto 14049, ZIP, Brazil

3. Department of Neurology, Amazonas State University, Manaus 69005, ZIP, Brazil

4. Division of Neurosurgery, Department of Neurology, University of São Paulo, São Paulo 01246, ZIP, Brazil

Abstract

Background: Due to the importance of not mistaking when determining the brain death (BD) diagnostic, reliable confirmatory exams should be performed to enhance its security. This study aims to evaluate the intracranial pressure (ICP) pulse morphology behavior in brain-dead patients through a noninvasive monitoring system. Methods: A pilot case-control study was conducted in adults that met the BD national protocol criteria. Quantitative parameters from the ICP waveforms, such as the P2/P1 ratio, time-to-peak (TTP) and pulse amplitude (AMP) were extracted and analyzed comparing BD patients and health subjects. Results: Fifteen patients were included, and 6172 waveforms were analyzed. ICP waveforms presented substantial differences amidst BD patients when compared to the control group, especially AMP, which had lower values in patients diagnosed with BD (p < 0.0001) and the TTP median (p < 0.00001), but no significance was found for the P2/P1 ratio (p = 0.8). The area under curve for combination of parameters on the BD prediction was 0.77. Conclusions: In this exploratory study, noninvasive ICP waveforms have shown potential as a screening method in patients with suspected brain death. Future studies should be carried out in a larger population.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3