Using Large Language Models to Address Health Literacy in mHealth

Author:

Loughran Elliot,Kane Madison,Wyatt Tami H.,Kerley Alex,Lowe Sarah,Li Xueping

Abstract

The innate complexity of medical topics often makes it challenging to produce educational content for the public. Although there are resources available to help authors appraise the complexity of their content, there are woefully few resources available to help authors reduce that complexity after it occurs. In this case study, we evaluate using ChatGPT to reduce the complex language used in health-related educational materials. ChatGPT adapted content from the SmartSHOTS mobile application, which is geared toward caregivers of children aged 0 to 24 months. SmartSHOTS helps reduce barriers and improve adherence to vaccination schedules. ChatGPT reduced complex sentence structure and rewrote content to align with a third-grade reading level. Furthermore, using ChatGPT to edit content already written removes the potential for unnoticed, artificial intelligence–produced inaccuracies. As an editorial tool, ChatGPT was effective, efficient, and free to use. This article discusses the potential of ChatGPT as an effective, time-efficient, and open-source method for editing health-related educational materials to reflect a comprehendible reading level.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference13 articles.

1. Readability of patient education materials from high-impact medical journals: a 20-year analysis;Journal of Patient Experience,2021

2. ChatGPT and the rise of large language models: the new AI-driven infodemic threat in public health;Frontiers in Public Health,2023

3. Readability of the most commonly accessed online patient education materials pertaining to surgical treatments of the spine;World Neurosurgery,2021

4. A dynamic approach to communication in health literacy education;BMC Medical Education,2016

5. Making a case for “education for health literacy”: an international perspective;International Journal of Environmental Research and Public Health,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3