Skin Toxicity After Exposure to Gadolinium-Based Contrast Agents in Normal Renal Function, Using Clinical Approved Doses

Author:

Parillo Marco1,Mallio Carlo A.1,Van der Molen Aart J.2,Rovira Àlex3,Ramalho Joana4,Ramalho Miguel5,Gianolio Eliana6,Karst Uwe7,Radbruch Alexander8,Stroomberg Gerard9,Clement Olivier10,Dekkers Ilona A.2,Nederveen Aart J.11,Quattrocchi Carlo C.12,

Affiliation:

1. Unit of Diagnostic Imaging and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy

2. Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands

3. Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain

4. Department of Neuroradiology, Centro Hospitalar Universitário de Lisboa Central, Lisbon

5. Department of Radiology, Hospital Garcia de Orta, EPE, Almada, Portugal

6. Department of Molecular Biotechnologies and Health Science, University of Turin, Turin, Italy

7. Institute of Inorganic and Analytical Chemistry, University of Münster, Münster

8. Department of Neuroradiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

9. RIWA-Rijn–Association of River Water Works, Nieuwegein, the Netherlands

10. Université de Paris, AP-HP, Hôpital Européen Georges Pompidou, DMU Imagina, Service de Radiologie, Paris, France

11. Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands

12. Centre for Medical Sciences-CISMed, University of Trento, Trento, Italy.

Abstract

Objectives The aim of this study was to summarize the current preclinical and clinical evidence on the association between exposure to gadolinium (Gd) compounds and skin toxicity in a setting similar to clinical practice. Materials and Methods A search of MEDLINE and PubMed references from January 2000 to December 2022 was performed using keywords related to gadolinium deposition and its effects on the skin, such as “gadolinium,” “gadolinium-based contrast agents,” “skin,” “deposition,” and “toxicity.” In addition, cross-referencing was added when appropriate. For preclinical in vitro studies, we included all the studies that analyzed the response of human dermal fibroblasts to exposure to various gadolinium compounds. For preclinical animal studies and clinical studies, we included only those that analyzed animals or patients with preserved renal function (estimated glomerular filtration rate >30 mL/min/1.73 m2), using a dosage of gadolinium-based contrast agents (GBCAs) similar to that commonly applied (0.1 mmol/kg). Results Forty studies were selected. Preclinical findings suggest that Gd compounds can produce profibrotic responses in the skin in vitro, through the activation and proliferation of dermal fibroblasts and promoting their myofibroblast differentiation. Gadolinium influences the process of collagen production and the collagen content of skin, by increasing the levels of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1. Preclinical animal studies show that Gd can deposit in the skin with higher concentrations when linear GBCAs are applied. However, these deposits decrease over time and are not associated with obvious macroscopic or histological modifications. The clinical relevance of GBCAs in inducing small fiber neuropathy remains to be determined. Clinical studies show that Gd is detectable in the skin and hair of subjects with normal renal function in higher concentrations after intravenous administration of linear compared with macrocyclic GBCA. However, these deposits decrease over time and are not associated with cutaneous or histological modifications. Also, subclinical dermal involvement related to linear GBCA exposure may be detectable on brain MRI. There is no conclusive evidence to support a causal relationship between GBCA administration at the clinical dose and cutaneous manifestations in patients with normal renal function. Conclusions Gadolinium can produce profibrotic responses in the skin, especially acting on fibroblasts, as shown by preclinical in vitro studies. Gadolinium deposits are detectable in the skin even in subjects with normal renal function with higher concentrations when linear GBCAs are used, as confirmed by both preclinical animal and human studies. There is no proof to date of a cause-effect relationship between GBCA administration at clinical doses and cutaneous consequences in patients with normal renal function. Multiple factors, yet to be determined, should be considered for sporadic patients with normal renal function who develop clinical skin manifestations temporally related to GBCA administration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3