Measuring the in Vivo Binding Parameters of [18F]-Fallypride in Monkeys Using a PET Multiple-Injection Protocol

Author:

Christian Bradley T1,Narayanan Tanjore1,Shi Bing1,Morris Evan D2,Mantil Joseph1,Mukherjee Jogeshwar3

Affiliation:

1. Dept. of PET/Nuclear Medicine, Kettering Medical Center, Dayton, OH, USA

2. Dept. of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA

3. Dept. of Psychiatry and Human Behavior, University of California-Irvine, Irvine, CA USA

Abstract

The goal of this work was to quantify the in vivo transport and binding parameters of [F-18]fallypride and the D2/D3 receptor density (B′max) in both the striatal (putamen, caudate, ventral striatum) and extrastriatal regions (thalamus, amygdala, cerebellum, temporal and frontal cortices) of the rhesus monkey brain. Multiple-injection PET experimental protocols with injections of radiolabeled and unlabeled doses of fallypride were used to estimate the K1, k2, kon/VR, koff and B′max kinetic parameters. The experimental design was chosen using the D-optimal criterion to maximize the precision of the estimated binding parameters for the various brain regions. There was a significant range in B′max for the putamen (27pmol/mL), caudate (23pmol/mL), ventral striatum (14pmol/mL), thalamus (1.8pmol/mL) and amygdala (0.9pmol/mL). Significant receptor binding was also found in the cortical regions. Knowledge of these in vivo rate constants serves as a necessary step in using [F-18]fallypride PET to measure D2/D3 receptor density and drug occupancy in clinical research applications. We believe the precise parameter estimates derived from these complicated experimental protocols are necessary for proper application of drug occupancy and clinical research studies with [F-18]fallypride, which often rely on the validity of assumptions regarding the model parameters.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3