Astrocytes as a Predominant Cellular Site of 99mTc-HMPAO Retention

Author:

Zerarka Sabrina1,Pellerin Luc1,Slosman Daniel2,Magistretti Pierre J.3

Affiliation:

1. Institute of Physiology, University of Lausanne, Lausanne

2. Department of Nuclear Medicine, Cantonal University Hospital, Geneva, Switzerland

3. Service of Neurology, University of Lausanne, Lausanne

Abstract

Technetium-99m-d,l-hexamethylpropylene amine oxime (99mTc-HMPAO) retention in the brain monitored by single photon emission computed tomography (SPECT) is currently used as a marker of cerebral blood flow. The purported mechanism by which 99mTc-HMPAO accumulates in the brain is through its intracellular conversion from a lipophilic form to more hydrophilic derivatives within the brain parenchyma. The issue of the contribution of different cell types on 99mTc-HMPAO retention was investigated in vitro by studying the accumulation of 99mTc-HMPAO in primary cultures of mouse cortical astrocytes and neurons. Results show that 99mTc-HMPAO retention predominates in astrocytes over neurons by a factor of ∼2.5 (0.26 ± 0.05 vs. 0.095 ± 0.042 fmol/mg protein after 120 minutes, respectively). Diethyl maleate (60 μmol/L), ethacrynic acid (1 mmol/L) and buthionine sulfoximine (1 mmol/L), 3 agents which significantly reduced glutathione levels also decreased 99mTc-HMPAO retention in both astrocytes (29%, 3%, and 46% of control, respectively) and neurons (69%, 11% and 63% of control). Decrease did not always correlate with glutathione levels, however, which suggests that other factors could be involved. The possibility that cell energy status determines 99mTc-HMPAO retention was also assessed. Agents that activate (glutamate, azide) or inhibit (cytochalasin B) glucose utilization in astrocytes, as measured by the 3H-2-deoxyglucose method, were without effect on 99mTc-HMPAO retention. In conclusion, the data presented indicate that astrocytes may constitute a prominent site of 99mTc-HMPAO retention and most likely contribute significantly to the SPECT signal. In addition, the data also suggest that specific alterations in glial cell metabolism could explain flow-independent changes in 99mTc-HMPAO retention in the brain as observed by SPECT in some pathologies.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3