The silent information regulator 1 agonist SRT1720 reduces experimental intracerebral hemorrhagic brain injury by regulating the blood–brain barrier integrity

Author:

Xing Gebeili1,Mu Lei2,Han Bing1,Zhu Runxiu1

Affiliation:

1. Neurology, Inner Mongolia People’s Hospital

2. Geriatrics, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China

Abstract

Intracerebral hemorrhage (ICH) is a significant public health matter that has no effective treatment. ICH-induced destruction of the blood–brain barrier (BBB) leads to neurological deterioration. Astrocytic sonic hedgehog (SHH) alleviates brain injury by maintaining the integrity of the BBB after ICH. Silent information regulator 1 (SIRT1) is neuroprotective in several central nervous system diseases via BBB regulation. It is also a possible influential factor of the SHH signaling pathway. Nevertheless, the role of SIRT1 on BBB and the underlying pathological process associated with the SHH signaling pathway after ICH remain unclear. We established an intracerebral hemorrhagic mouse model by collagenase injection. SRT1720 (a selective agonist of SIRT1) was used to evaluate the effect of SIRT1 on BBB integrity after ICH. SIRT1 expression was reduced in the mouse brain after ICH. SRT1720 attenuated neurobehavioral impairments and brain edema of ICH mouse. After ICH induction, SRT1720 improved BBB integrity and tight junction expressions in the mouse brain. The SHH signaling pathway-related factors smoothened and glioma-associated oncogene homolog-1 were increased with the intervention of SRT1720, while cyclopamine (a specific inhibitor of the SHH signaling pathway) reversed these effects. These findings suggest that SIRT1 protects from ICH by altering BBB permeability and tight junction expression levels. This process is associated with the SHH signaling pathway, suggesting that SIRT1 may be a potential therapeutic target for ICH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3