Large Language Models in Medical Education: Comparing ChatGPT- to Human-Generated Exam Questions

Author:

Laupichler Matthias CarlORCID,Rother Johanna FloraORCID,Grunwald Kadow Ilona C.ORCID,Ahmadi Seifollah,Raupach TobiasORCID

Abstract

Abstract Problem Creating medical exam questions is time consuming, but well-written questions can be used for test-enhanced learning, which has been shown to have a positive effect on student learning. The automated generation of high-quality questions using large language models (LLMs), such as ChatGPT, would therefore be desirable. However, there are no current studies that compare students’ performance on LLM-generated questions to questions developed by humans. Approach The authors compared student performance on questions generated by ChatGPT (LLM questions) with questions created by medical educators (human questions). Two sets of 25 multiple-choice questions (MCQs) were created, each with 5 answer options, 1 of which was correct. The first set of questions was written by an experienced medical educator, and the second set was created by ChatGPT 3.5 after the authors identified learning objectives and extracted some specifications from the human questions. Students answered all questions in random order in a formative paper-and-pencil test that was offered leading up to the final summative neurophysiology exam (summer 2023). For each question, students also indicated whether they thought it had been written by a human or ChatGPT. Outcomes The final data set consisted of 161 participants and 46 MCQs (25 human and 21 LLM questions). There was no statistically significant difference in item difficulty between the 2 question sets, but discriminatory power was statistically significantly higher in human than LLM questions (mean = .36, standard deviation [SD] = .09 vs mean = .24, SD = .14; P = .001). On average, students identified 57% of question sources (human or LLM) correctly. Next Steps Future research should replicate the study procedure in other contexts (e.g., other medical subjects, semesters, countries, and languages). In addition, the question of whether LLMs are suitable for generating different question types, such as key feature questions, should be investigated.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3