A novel lightweight deep learning fall detection system based on global-local attention and channel feature augmentation

Author:

Sha Yuyang,Zhai Xiaobing,Li Junrong,Meng Weiyu,Tong Henry H.Y.,Li Kefeng

Abstract

Abstract Background and Objective: Reducing the number of falls in nursing facilities is crucial to prevent significant injury, increased costs, and emotional harm. However, current fall detection systems face a trade-off between accuracy and inference speed. This work aimed to develop a novel lightweight fall detection system that can achieve high accuracy and speed while reducing computational cost and model size. Methods: We used convolutional neural networks and the channel-wise dropout and global-local attention module to train a lightweight fall detection model on over 10,000 human fall images from various scenarios. We also applied a channel-based feature augmentation module to enhance the robustness and stability of the model. Results: The proposed model achieved a detection precision of 95.1%, a recall of 93.3%, and a mean average precision of 91.8%. It also had a significantly smaller size of 1.09 million model parameters and a lower computational cost of 0.12 gigaFLOPS than existing methods. It could handle up to 20 cameras, simultaneously with a speed higher than 30 fps. Conclusion: The proposed lightweight model demonstrated excellent performance and practicality for fall detection in real-world settings, which could reduce the working pressure on medical staff and improve nursing efficiency.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3