Low-Cost Non-Wearable Fall Detection System Implemented on a Single Board Computer for People in Need of Care

Author:

Vargas Vanessa1ORCID,Ramos Pablo1ORCID,Orbe Edwin A.2,Zapata Mireya3ORCID,Valencia-Aragón Kevin3ORCID

Affiliation:

1. Grupo de Investigación Embsys, Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui y Ambato, Sangolquí 171103, Ecuador

2. Grupo de Investigación Embsys, Carrera de Ingeniería en Electrónica y Automatización, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui y Ambato, Sangolquí 171103, Ecuador

3. Centro de Investigación en Mecatrónica y Sistemas Interactivos (MIST), Ingeniería Industrial, Universidad Indoamérica, Av. Machala y Sabanilla, Quito 170103, Ecuador

Abstract

This work aims at proposing an affordable, non-wearable system to detect falls of people in need of care. The proposal uses artificial vision based on deep learning techniques implemented on a Raspberry Pi4 4GB RAM with a High-Definition IR-CUT camera. The CNN architecture classifies detected people into five classes: fallen, crouching, sitting, standing, and lying down. When a fall is detected, the system sends an alert notification to mobile devices through the Telegram instant messaging platform. The system was evaluated considering real daily indoor activities under different conditions: outfit, lightning, and distance from camera. Results show a good trade-off between performance and cost of the system. Obtained performance metrics are: precision of 96.4%, specificity of 96.6%, accuracy of 94.8%, and sensitivity of 93.1%. Regarding privacy concerns, even though this system uses a camera, the video is not recorded or monitored by anyone, and pictures are only sent in case of fall detection. This work can contribute to reducing the fatal consequences of falls in people in need of care by providing them with prompt attention. Such a low-cost solution would be desirable, particularly in developing countries with limited or no medical alert systems and few resources.

Funder

Universidad de las Fuerzas Armadas ESPE

Universidad Indoamérica

Publisher

MDPI AG

Reference37 articles.

1. A novel monitoring system for fall detection in older people;Taramasco;IEEE Access,2018

2. Falls and fall injuries among adults aged ≥65 years—United States, 2014;Bergen;MMWR Morb. Mortal. Wkly. Rep.,2016

3. Global prevalence of falls in the older adults: A comprehensive systematic review and meta-analysis;Salari;J. Orthop. Surg. Res.,2022

4. Qualidade de vida em idosos que sofreram quedas: Revisão integrativa da literatura;Nicolussi;Cien. Saude Colet.,2012

5. World_Health_Organization (2024, May 14). Falls. Available online: https://www.who.int/news-room/fact-sheets/detail/falls.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3