Precise Monitoring of Returning Sensation in Digital-Nerve Lesions by Three-Dimensional Imaging: A Proof-of-Concept Study

Author:

Ruewe Marc1,Eigenberger Andreas12,Klein Silvan M.1,von Riedheim Antonia1,Gugg Christine1,Prantl Lukas1,Palm Christoph3,Weiherer Maximilian3,Zeman Florian4,Anker Alexandra M.1

Affiliation:

1. Department of Plastic, Reconstructive, Aesthetic, and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef Regensburg

2. Faculty of Mechanical Engineering

3. Regensburg Medical Image Computing, Ostbayerische Technische Hochschule Regensburg

4. Center for Clinical Studies, University Hospital Regensburg.

Abstract

Summary: Digital-nerve lesions result in a loss of tactile sensation reflected by an anesthetic area (AA) at the radial or ulnar aspect of the respective digit. Available tools to monitor the recovery of tactile sense have been criticized for their lack of validity. Precise quantification of AA dynamics by three-dimensional (3D) imaging could serve as an accurate surrogate to monitor recovery after digital-nerve repair. For validation, AAs were marked on digits of healthy volunteers to simulate the AA of an impaired cutaneous innervation. The 3D models were composed from raw images that had been acquired with a 3D camera to precisely quantify relative AA for each digit (3D models, n = 80). Operator properties varied with regard to individual experience in 3D imaging and image processing. In addition, the concept was applied in a clinical case study. Results showed that images taken by experienced photographers were rated as better quality (P < 0.001) and needed less processing time (P = 0.020). Quantification of the relative AA was not altered significantly, regardless of experience level of the photographer (P = 0.425) or image assembler (P = 0.749). The proposed concept allows precise and reliable surface quantification of digits and can be performed consistently without relevant distortion by lack of examiner experience. Routine 3D imaging of the AA has the great potential to provide visual evidence of various returning states of sensation and to convert sensory nerve recovery into a metric variable with high responsiveness to temporal progress.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3