Simultaneous, radiation-free registration of the dentoalveolar position and the face by combining 3D photography with a portable scanner and impression-taking

Author:

Ritschl Lucas M.,Wolff Klaus-Dietrich,Erben Pia,Grill Florian D.ORCID

Abstract

Abstract Objectives Simultaneous, radiation-free registration of the teeth and the upper and lower jaw positions in relation to the extraoral soft tissue could improve treatment planning and documentation. The purpose of this study is to describe a workflow to solve this form of registration and surface acquisition with a mobile device. Methods Facial scans of ten healthy participants were taken using a blue-light LED 3D scanner (Artec® Space Spider; Artec® Group; Luxembourg). An impression of the maxillary dentoalveolar arch was taken simultaneously to the 3D photo using a modified impression tray with two different extraoral registration geometries (sphere vs. cross). Following, an impression of the mandibular dentoalveolar arch was taken once. Both impressions were scanned with the 3D scanner. All resulting standard tesselation language (.stl) files of the geometries were compared to the original, virtual .stl files and the root mean square errors (RMSE) were calculated for each surface (Artec Studio 13 Professional × 64; Artec® Group; Luxembourg) to determine which geometry serves as a better reference for intra-extraoral registration. Results The RMSE between the original geometries and the scanned counterfeits were statistically lower for spherical geometries (p < 0.008). Once scanned and aligned, both geometries enabled an alignment of the intra- and extraoral scan. However, the spherical geometries showed virtually better results without significance (p = 0.70). Conclusions The presented study provides a radiation-free solution for simultaneous dentoalveolar correlations in relation to the extraoral soft tissue. Spherical geometries achieved more precise and easier intra-extraoral alignments using the applied mobile 3D scanner and workflow.

Funder

Helene Matras Preis

Publisher

Springer Science and Business Media LLC

Subject

Clinical Neurology,General Dentistry,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3