Affiliation:
1. First Clinical School of Medicine, Guangxi Traditional Chinese Medical University, Nanning, China
2. Department of Orthopedics and Traumatology, Xianhu District, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China.
Abstract
Osteoarthritis (OA) is a chronic joint disease that reduces quality of life for patients. Ferroptosis plays a significant role in OA. However, its underlying mechanism remains unclear. In this study, we integrated 7 OA synovial datasets from the GEO database to screen for significant ferroptosis-related genes. The top 5 ferroptosis regulators were used to construct nomogram models to predict OA prevalence. Consensus clustering was applied to classify OA patients into different ferroptosis patterns based on significant ferroptosis-related genes. Subsequently, an immune cell infiltration study was performed to investigate the relationship between the significant ferroptosis regulators and immune cells. As a result, we screened 11 ferroptosis-related genes in OA patients. Five candidate ferroptosis regulators (SLC7A11, ALOX5, SLC1A5, GOT1, and GSS) were used to predict OA risk. The nomogram model based on these 5 genes is important for assessing the occurrence of OA. Consensus clustering analysis showed that OA patients could be classified into 2 ferroptosis patterns (Clusters A and B). Immune cell infiltration levels were higher in Cluster B than in Cluster A. Two subtypes, gene Clusters A and B, were classified according to the expression of ferroptosis-related DEGs among the ferroptosis patterns. Cluster A and gene Cluster A had higher ferroptosis scores than Cluster B or gene Cluster B, whereas the expression levels of the proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor, IL-6, IL-18, and IL-10 were higher in Cluster B or gene Cluster B than those in Cluster A or gene Cluster A. Different subtypes of ferroptosis play critical roles in OA. Furthermore, immunotherapy strategies for OA treatment may be guided by our study on ferroptosis patterns.
Publisher
Ovid Technologies (Wolters Kluwer Health)