Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis

Author:

Chou Ching-Heng,Jain Vaibhav,Gibson Jason,Attarian David E.,Haraden Collin A.,Yohn Christopher B.,Laberge Remi-Martin,Gregory Simon,Kraus Virginia B.

Abstract

AbstractWe elucidated the molecular cross-talk between cartilage and synovium in osteoarthritis, the most widespread arthritis in the world, using the powerful tool of single-cell RNA-sequencing. Multiple cell types were identified based on profiling of 10,640 synoviocytes and 26,192 chondrocytes: 12 distinct synovial cell types and 7 distinct articular chondrocyte phenotypes from matched tissues. Intact cartilage was enriched for homeostatic and hypertrophic chondrocytes, while damaged cartilage was enriched for prefibro- and fibro-, regulatory, reparative and prehypertrophic chondrocytes. A total of 61 cytokines and growth factors were predicted to regulate the 7 chondrocyte cell phenotypes. Based on production by > 1% of cells, 55% of the cytokines were produced by synovial cells (39% exclusive to synoviocytes and not expressed by chondrocytes) and their presence in osteoarthritic synovial fluid confirmed. The synoviocytes producing IL-1beta (a classic pathogenic cytokine in osteoarthritis), mainly inflammatory macrophages and dendritic cells, were characterized by co-expression of surface proteins corresponding to HLA-DQA1, HLA-DQA2, OLR1 or TLR2. Strategies to deplete these pathogenic intra-articular cell subpopulations could be a therapeutic option for human osteoarthritis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3