Oxidative stress’s impact on red blood cells: Unveiling implications for health and disease

Author:

Obeagu Emmanuel Ifeanyi1ORCID,Igwe Matthew Chibunna2,Obeagu Getrude Uzoma3

Affiliation:

1. Department of Medical Laboratory Science, Kampala International University, Ishaka, Uganda

2. Department of Public Health, Kampala International University, Ishaka, Uganda

3. School of Nursing Science, Kampala International University, Ishaka, Uganda.

Abstract

Oxidative stress, a condition characterized by an imbalance between reactive oxygen species (ROS) production and the body’s ability to detoxify them, has emerged as a pivotal factor in the pathophysiology of various diseases. Red blood cells (RBCs), essential components of the circulatory system, are particularly susceptible to oxidative damage due to their high oxygen-carrying capacity and the abundance of vulnerable biomolecules. This review comprehensively explores the intricate mechanisms underlying oxidative stress-induced damage to red blood cells and the subsequent implications for overall health and disease. We delve into the sources of ROS generation within RBCs, including metabolic processes and external factors, shedding light on the delicate redox balance that governs cellular homeostasis. The impact of oxidative stress on red blood cells extends beyond the confines of their primary physiological role, as these cells actively participate in immune responses, inflammation modulation, and nitric oxide metabolism. Consequently, understanding the implications of oxidative stress on RBCs provides valuable insights into the broader landscape of health and disease. In conclusion, this review underscores the critical role of oxidative stress in influencing red blood cell physiology and its far-reaching implications for human health. Elucidating the molecular intricacies of this relationship not only enhances our understanding of fundamental biological processes but also paves the way for the development of targeted therapeutic interventions to mitigate the adverse effects of oxidative stress on red blood cells and, by extension, on overall health.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3