Guiding HIV-1 vaccine development with preclinical nonhuman primate research

Author:

Counts James A.1,Saunders Kevin O.2

Affiliation:

1. Duke Human Vaccine Institute, Department of Medicine

2. Duke Human Vaccine Institute, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA

Abstract

Purpose of the review Nonhuman primates (NHPs) are seen as the closest animal model to humans in terms of anatomy and immune system makeup. Here, we review how preclinical studies in this model system are teaching the field of HIV vaccinology the basic immunology that is needed to induce broadly neutralizing antibodies (bnAbs) with vaccination and elicit protective T cell responses. These lessons are being translated into clinical trials to advance towards protective active vaccination against HIV-1 infection. Recent findings Preclinical vaccination studies in NHPs have shown that highly engineered HIV-1 immunogens can initiate bnAb precursors providing proof of concept for Phase I clinical trials. Additionally, NHP models of HIV-1 infection are elucidating the pathways for bnAb development while serving as systems to evaluate vaccine protection. Innovative immunization strategies have increased affinity maturation of HIV-1 antibodies in long-lived germinal centers. Preclinical studies in macaques have defined the protective level of neutralizing antibodies and have shown that T cell responses can synergize with antibody-mediated immunity to provide protection in the presence of lower neutralizing antibody titers. Summary The NHP model provides vaccine regimens and desired antibody and T cell responses that serve as benchmarks for clinical trials, accelerating HIV vaccine design.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Virology,Infectious Diseases,Oncology (nursing),Oncology,Hematology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Is an HIV vaccine still achievable?;Current Opinion in HIV and AIDS;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3