Targeting de novo lipid synthesis induces lipotoxicity and impairs DNA damage repair in glioblastoma mouse models

Author:

Eyme Katharina M.12ORCID,Sammarco Alessandro134ORCID,Jha Roshani1ORCID,Mnatsakanyan Hayk1,Pechdimaljian Caline1ORCID,Carvalho Litia15ORCID,Neustadt Rudolph1ORCID,Moses Charlotte1ORCID,Alnasser Ahmad1ORCID,Tardiff Daniel F.6,Su Baolong78ORCID,Williams Kevin J.78ORCID,Bensinger Steven J.48ORCID,Chung Chee Yeun6ORCID,Badr Christian E.15ORCID

Affiliation:

1. Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA.

2. Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.

3. Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.

4. Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.

5. Neuroscience Program, Harvard Medical School, Boston, MA 02115, USA.

6. Yumanity Therapeutics, Boston, MA 02139, USA.

7. Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA.

8. UCLA Lipidomics Laboratory, University of California, Los Angeles, CA 90095, USA.

Abstract

Deregulated de novo lipid synthesis (DNLS) is a potential druggable vulnerability in glioblastoma (GBM), a highly lethal and incurable cancer. Yet the molecular mechanisms that determine susceptibility to DNLS-targeted therapies remain unknown, and the lack of brain-penetrant inhibitors of DNLS has prevented their clinical evaluation as GBM therapeutics. Here, we report that YTX-7739, a clinical-stage inhibitor of stearoyl CoA desaturase (SCD), triggers lipotoxicity in patient-derived GBM stem-like cells (GSCs) and inhibits fatty acid desaturation in GSCs orthotopically implanted in mice. When administered as a single agent, or in combination with temozolomide (TMZ), YTX-7739 showed therapeutic efficacy in orthotopic GSC mouse models owing to its lipotoxicity and ability to impair DNA damage repair. Leveraging genetic, pharmacological, and physiological manipulation of key signaling nodes in gliomagenesis complemented with shotgun lipidomics, we show that aberrant MEK/ERK signaling and its repression of the energy sensor AMP-activated protein kinase (AMPK) primarily drive therapeutic vulnerability to SCD and other DNLS inhibitors. Conversely, AMPK activation mitigates lipotoxicity and renders GSCs resistant to the loss of DNLS, both in culture and in vivo, by decreasing the saturation state of phospholipids and diverting toxic lipids into lipid droplets. Together, our findings reveal mechanisms of metabolic plasticity in GSCs and provide a framework for the rational integration of DNLS-targeted GBM therapies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3