Sub–180-nanometer-thick ultraconformable high-performance carbon nanotube–based dual-gate transistors and differential amplifiers

Author:

Wang Yuru1ORCID,Wang Tingzhi1,Xiang Li2ORCID,Huang Ruyi3,Long Guanhua1,Wang Wanyi1ORCID,Xi Meiqi1,Tian Jiamin1ORCID,Li Wangchang1,Deng Xiaosong1ORCID,Gong Qibei1ORCID,Bai Tianshun1,Chen Yufan1,Liu Hong1,Xia Yu1ORCID,Liang Xuelei1,Chen Qing1ORCID,Peng Lian-Mao13ORCID,Hu Youfan13ORCID

Affiliation:

1. Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics and School of Electronics, Peking University, Beijing 100871, China.

2. College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.

3. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

Abstract

There is increased interest in ultrathin flexible devices with thicknesses of <1 micrometers due to excellent conformability toward advanced laminated bioelectronics. However, because of limitations in materials, device structure, and fabrication methodology, the performance of these ultrathin devices and circuits is insufficient to support higher-level applications. Here, we report high-performance carbon nanotube–based thin-film transistors (TFTs) and differential amplifiers on ultrathin polyimide films with a total thickness of <180 nanometers. A dual-gate structure is introduced to guarantee excellent gate control efficiency and mechanical stability of the ultrathin TFTs, which exhibit high transconductance (8.96 microsiemens per micrometer), high mobility (127 square centimeters per volt per second), and steep subthreshold swing (84 millivolts per decade), and can sustain a bending radius of curvature of <10 micrometers. The differential amplifier achieves the highest gain-bandwidth product (1.83 megahertz) among flexible differential amplifiers, enabling higher-gain amplification of weak signals over an extended frequency spectrum that is demonstrated by amplification of electromyography signals in situ.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3