Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing

Author:

Li Jiancong1ORCID,Ren Sheng-guang1ORCID,Li Yi12ORCID,Yang Ling1,Yu Yinjie1ORCID,Ni Run1,Zhou Houji1,Bao Han1,He Yuhui12ORCID,Chen Jia3,Jia Han1,Miao Xiangshui12ORCID

Affiliation:

1. School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories, Huazhong University of Science and Technology, Wuhan 430074, China.

2. Hubei Yangtze Memory Laboratories, Wuhan 430205, China.

3. AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong, China.

Abstract

Memristor-enabled in-memory computing provides an unconventional computing paradigm to surpass the energy efficiency of von Neumann computers. Owing to the limitation of the computing mechanism, while the crossbar structure is desirable for dense computation, the system’s energy and area efficiency degrade substantially in performing sparse computation tasks, such as scientific computing. In this work, we report a high-efficiency in-memory sparse computing system based on a self-rectifying memristor array. This system originates from an analog computing mechanism that is motivated by the device’s self-rectifying nature, which can achieve an overall performance of ~97 to ~11 TOPS/W for 2- to 8-bit sparse computation when processing practical scientific computing tasks. Compared to previous in-memory computing system, this work provides over 85 times improvement in energy efficiency with an approximately 340 times reduction in hardware overhead. This work can pave the road toward a highly efficient in-memory computing platform for high-performance computing.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference57 articles.

1. M. Renardy R. C. Rogers An Introduction to Partial Differential Equations (Springer 2006).

2. Giga-voxel computational morphogenesis for structural design

3. The quiet revolution of numerical weather prediction

4. Partial differential equation models in macroeconomics;Achdou Y.;Philos. Trans. A Math. Phys. Eng. Sci.,2014

5. The chips are down for Moore’s law

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3