Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States

Author:

Cheng Yanyan12ORCID,Huang Maoyi2ORCID,Lawrence David M.3,Calvin Katherine4,Lombardozzi Danica L.3ORCID,Sinha Eva2ORCID,Pan Ming5ORCID,He Xiaogang6ORCID

Affiliation:

1. Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore, Singapore.

2. Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA, USA.

3. Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA.

4. Joint Global Change Research Institute, Pacific Northwest National Laboratory, Riverdale Park, MD, USA.

5. CW3E, Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA.

6. Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore.

Abstract

The maximum future projected bioenergy expansion potential, in scenarios limiting warming to 2°C or below, is equivalent to half of present-day croplands. We quantify the impacts of large-scale bioenergy expansion against re/afforestation, which remain elusive, using an integrated human-natural system modeling framework with explicit representation of perennial bioenergy crops. The end-of-century net carbon sequestration due to bioenergy deployment coupled with carbon capture and storage largely depends on fossil fuel displacement types, ranging from 11.4 to 31.2 PgC over the conterminous United States. These net carbon sequestration benefits are inclusive of a 10 PgC carbon release due to land use conversions and a 2.4 PgC loss of additional carbon sink capacity associated with bioenergy-driven deforestation. Moreover, nearly one-fourth of U.S. land areas will suffer severe water stress by 2100 due to either reduced availability or deteriorated quality. These broader impacts of bioenergy expansion should be weighed against the costs and benefits of re/afforestation-based strategies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3