Electronic-grade epitaxial (111) KTaO 3 heterostructures

Author:

Kim Jieun1ORCID,Yu Muqing23ORCID,Lee Jung-Woo1ORCID,Shang Shun-Li4ORCID,Kim Gi-Yeop5ORCID,Pal Pratap1ORCID,Seo Jinsol67ORCID,Campbell Neil8,Eom Kitae1ORCID,Ramachandran Ranjani23ORCID,Rzchowski Mark S.8ORCID,Oh Sang Ho67ORCID,Choi Si-Young5ORCID,Liu Zi-Kui4ORCID,Levy Jeremy23ORCID,Eom Chang-Beom1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

2. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.

3. Pittsburgh Quantum Institute, Pittsburgh, PA 15260, USA.

4. Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

5. Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea.

6. Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea.

7. Department of Energy Engineering, KENTECH Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea.

8. Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA.

Abstract

KTaO 3 heterostructures have recently attracted attention as model systems to study the interplay of quantum paraelectricity, spin-orbit coupling, and superconductivity. However, the high and low vapor pressures of potassium and tantalum present processing challenges to creating heterostructure interfaces clean enough to reveal the intrinsic quantum properties. Here, we report superconducting heterostructures based on high-quality epitaxial (111) KTaO 3 thin films using an adsorption-controlled hybrid PLD to overcome the vapor pressure mismatch. Electrical and structural characterizations reveal that the higher-quality heterostructure interface between amorphous LaAlO 3 and KTaO 3 thin films supports a two-dimensional electron gas with substantially higher electron mobility, superconducting transition temperature, and critical current density than that in bulk single-crystal KTaO 3 -based heterostructures. Our hybrid approach may enable epitaxial growth of other alkali metal–based oxides that lie beyond the capabilities of conventional methods.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3