Human voltage-gated Na + and K + channel properties underlie sustained fast AP signaling

Author:

Wilbers René1ORCID,Metodieva Verjinia D.1ORCID,Duverdin Sarah1ORCID,Heyer Djai B.1ORCID,Galakhova Anna A.1ORCID,Mertens Eline J.1ORCID,Versluis Tamara D.1,Baayen Johannes C.2ORCID,Idema Sander2ORCID,Noske David P.2ORCID,Verburg Niels2ORCID,Willemse Ronald B.2ORCID,de Witt Hamer Philip C.2ORCID,Kole Maarten H. P.34ORCID,de Kock Christiaan P. J.1ORCID,Mansvelder Huibert D.1ORCID,Goriounova Natalia A.1ORCID

Affiliation:

1. Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands.

2. Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands.

3. Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, Netherlands.

4. Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, Netherlands.

Abstract

Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na + ) and potassium (K + ) currents in human pyramidal neurons can explain their fast input-output properties. Human Na + and K + currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na + channel densities in human neurons, the biophysical properties of Na + channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na + channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na + and K + channels enable fast input-output properties of large human pyramidal neurons.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3