Structural and functional specializations of human fast-spiking neurons support fast cortical signaling

Author:

Wilbers René1ORCID,Galakhova Anna A.1ORCID,Driessens Stan L.W.1,Heistek Tim S.1,Metodieva Verjinia D.1ORCID,Hagemann Jim1,Heyer Djai B.1ORCID,Mertens Eline J.1ORCID,Deng Suixin23ORCID,Idema Sander4ORCID,de Witt Hamer Philip C.4ORCID,Noske David P.4ORCID,van Schie Paul4,Kommers Ivar4ORCID,Luan Guoming5ORCID,Li Tianfu5,Shu Yousheng23ORCID,de Kock Christiaan P.J.1ORCID,Mansvelder Huibert D.1ORCID,Goriounova Natalia A.1ORCID

Affiliation:

1. Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, de Boelelaan 1085, 1081 HV Amsterdam, Netherlands.

2. State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Wai Street, Beijing 100875, China.

3. Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 201508, China.

4. Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, de Boelelaan 1117, 1081 HV Amsterdam, Netherlands.

5. Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Xiangshan Yikesong 50, Beijing 100093, China.

Abstract

Fast-spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test in human neurons from neurosurgery tissue, which mechanistic specializations of human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multipatch recordings, and biophysical modeling, we find that despite threefold longer dendritic path, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na + current activation/inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3