Encoded sewing soft textile robots

Author:

Guo Xinyu1ORCID,Li Wenbo2ORCID,Fang Fuyi1,Chen Huyue3ORCID,Zhao Linchuan1,Fang Xiaoyong1,Yi Zhiran1ORCID,Shao Lei3ORCID,Meng Guang1,Zhang Wenming14ORCID

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China.

3. University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.

4. SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

Abstract

Incorporating soft actuation with soft yet durable textiles could effectively endow the latter with active and flexible shape morphing and motion like mollusks and plants. However, creating highly programmable and customizable soft robots based on textiles faces a longstanding design and manufacturing challenge. Here, we report a methodology of encoded sewing constraints for efficiently constructing three-dimensional (3D) soft textile robots through a simple 2D sewing process. By encoding heterogeneous stretching properties into three spatial seams of the sewed 3D textile shells, nonlinear inflation of the inner bladder can be guided to follow the predefined spatial shape and actuation sequence, for example, tendril-like shape morphing, tentacle-like sequential manipulation, and bioinspired locomotion only controlled by single pressure source. Such flexible, efficient, scalable, and low-cost design and formation methodology will accelerate the development and iteration of soft robots and also open up more opportunities for safe human-robot interactions, tailored wearable devices, and health care.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3