Thermally Driven 3D Seamless Textile Actuators for Soft Robotic Applications

Author:

Atalay Ozgur1ORCID,Ozlem Kadir2ORCID,Gumus Cagatay1ORCID,Ahmed Ibrahim Adel Khamis1,Yilmaz Ayse Feyza1ORCID,Celebi Mehmet Fatih3ORCID,Cetin Munire Sibel1ORCID,Taherkhani Bahman1,Tuncay Atalay Asli1ORCID,Ince Gökhan2ORCID

Affiliation:

1. Faculty of Textile Technologies and Design Textile Engineering Department Istanbul Technical University Istanbul 34437 Turkey

2. Faculty of Computer and Informatics Engineering Computer Engineering Department Istanbul Technical University Istanbul 34469 Turkey

3. Faculty of Technology Mechatronics Engineering Department Marmara University Istanbul 34854 Turkey

Abstract

Soft wearable robotic devices have emerged as a promising solution for human mobility assistance and rehabilitation, yet current solutions suffer from issues such as bulkiness, high cost, nonscalability, noise, and limited portability. This study introduces a novel approach to soft robotic assistive devices using untethered, soft actuators with seamlessly integrated sensing, heating, and actuation properties through digital machine knitting and low‐boiling liquid. The proposed soft actuator operates under a voltage of less than 12.5 V, generating a tip force of up to 50 mN. This actuator achieves a bending motion when filled with 2 mL of low‐boiling liquid and supplied with 15 W. The dynamic response of the actuator is examined under consistent parameters, revealing a 60‐second inflation time and a subsequent natural cooling period of 30 s at room temperature. Notably, over 12 cycles, the tip force of the actuator exhibits minimal variation, highlighting its durability for prolonged usage. The proposed approach paves the way for overcoming the limitations of existing technologies, particularly in terms of motion assistance and rehabilitation applications, with an emphasis on at‐home usage during daily activities.

Funder

HORIZON EUROPE European Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meso-macro deformation investigation for biaxial knitted textile based pouch motor;Mechanics of Advanced Materials and Structures;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3