Topological phase change transistors based on tellurium Weyl semiconductor

Author:

Chen Jiewei12ORCID,Zhang Ting3ORCID,Wang Jingli14ORCID,Xu Lin1ORCID,Lin Ziyuan1,Liu Jidong5,Wang Cong12,Zhang Ning12ORCID,Lau Shu Ping12ORCID,Zhang Wenjing5,Chhowalla Manish6ORCID,Chai Yang12ORCID

Affiliation:

1. Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

2. The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.

3. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

4. Frontier Institute of Chip and System, Fudan University, Shanghai, China.

5. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Shenzhen University, Shenzhen 518060, China.

6. Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.

Abstract

Modern electronics demand transistors with extremely high performance and energy efficiency. Charge-based transistors with conventional semiconductors experience substantial heat dissipation because of carrier scattering. Here, we demonstrate low-loss topological phase change transistors (TPCTs) based on tellurium, a Weyl semiconductor. By modulating the energy separation between the Fermi level and the Weyl point of tellurium through electrostatic gate modulation, the device exhibits topological phase change between Weyl (Chern number ≠ 0) and conventional (Chern number = 0) semiconductors. In the Weyl ON state, the device has low-loss transport characteristics due to the global topology of gauge fields against external perturbations; the OFF state exhibits trivial charge transport in the conventional phase by moving the Fermi level into the bandgap. The TPCTs show a high ON/OFF ratio (10 8 ) at low operation voltage (≤2 volts) and high ON-state conductance (39 mS/μm). Our studies provide alternative strategies for realizing ultralow power electronics.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3