Picosecond spin-orbit torque–induced coherent magnetization switching in a ferromagnet

Author:

Polley Debanjan123ORCID,Pattabi Akshay24ORCID,Rastogi Ashwin2,Jhuria Kaushalya15ORCID,Diaz Eva5,Singh Hanuman2ORCID,Lemaitre Aristide6ORCID,Hehn Michel5ORCID,Gorchon Jon5ORCID,Bokor Jeffrey12ORCID

Affiliation:

1. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.

2. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA.

3. Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India.

4. Department of Engineering, University of San Francisco, San Francisco CA 94117, USA.

5. Université de Lorraine, CNRS, IJL, Nancy, France.

6. Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France.

Abstract

Electrically controllable nonvolatile magnetic memories show great potential for the replacement of conventional semiconductor-based memory technologies. Here, we experimentally demonstrate ultrafast spin-orbit torque (SOT)–induced coherent magnetization switching dynamics in a ferromagnet. We use an ultrafast photoconducting switch and a coplanar strip line to generate and guide a ~9-picosecond electrical pulse into a heavy metal/ferromagnet multilayer to induce ultrafast SOT. We then use magneto-optical probing to investigate the magnetization dynamics with sub-picosecond resolution. Ultrafast heating by the approximately 9 picosecond current pulse induces a thermal anisotropy torque which, in combination with the damping-like torque, coherently rotates the magnetization to obtain zero-crossing of magnetization in ~70 picoseconds. A macro-magnetic simulation coupled with an ultrafast heating model agrees well with the experiment and suggests coherent magnetization switching without any incubation delay on an unprecedented time scale. Our work proposes a unique magnetization switching mechanism toward markedly increasing the writing speed of SOT magnetic random-access memory devices.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3