scAllele: A versatile tool for the detection and analysis of variants in scRNA-seq

Author:

Quinones-Valdez Giovanni1ORCID,Fu Ting2ORCID,Chan Tracey W.3,Xiao Xinshu12345ORCID

Affiliation:

1. Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

2. Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.

3. Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.

4. Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.

5. Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Abstract

Single-cell RNA sequencing (scRNA-seq) data contain rich information at the gene, transcript, and nucleotide levels. Most analyses of scRNA-seq have focused on gene expression profiles, and it remains challenging to extract nucleotide variants and isoform-specific information. Here, we present scAllele, an integrative approach that detects single-nucleotide variants, insertions, deletions, and their allelic linkage with splicing patterns in scRNA-seq. We demonstrate that scAllele achieves better performance in identifying nucleotide variants than other commonly used tools. In addition, the read-specific variant calls by scAllele enables allele-specific splicing analysis, a unique feature not afforded by other methods. Applied to a lung cancer scRNA-seq dataset, scAllele identified variants with strong allelic linkage to alternative splicing, some of which are cancer specific and enriched in cancer-relevant pathways. scAllele represents a versatile tool to uncover multilayer information and previously unidentified biological insights from scRNA-seq data.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3