Membrane repair triggered by cholesterol-dependent cytolysins is activated by mixed lineage kinases and MEK

Author:

Ray Sucharit1ORCID,Roth Robyn2,Keyel Peter A.1ORCID

Affiliation:

1. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.

2. Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Abstract

Repair of plasma membranes damaged by bacterial pore-forming toxins, such as streptolysin O or perfringolysin O, during septic cardiomyopathy or necrotizing soft tissue infections is mediated by several protein families. However, the activation of these proteins downstream of ion influx is poorly understood. Here, we demonstrate that following membrane perforation by bacterial cholesterol-dependent cytolysins, calcium influx activates mixed lineage kinase 3 independently of protein kinase C or ceramide generation. Mixed lineage kinase 3 uncouples mitogen-activated kinase kinase (MEK) and extracellular-regulated kinase (ERK) signaling. MEK signals via an ERK-independent pathway to promote rapid annexin A2 membrane recruitment and enhance microvesicle shedding. This pathway accounted for 70% of all calcium ion-dependent repair responses to streptolysin O and perfringolysin O, but only 50% of repair to intermedilysin. We conclude that mixed lineage kinase signaling via MEK coordinates microvesicle shedding, which is critical for cellular survival against cholesterol-dependent cytolysins.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3