Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane

Author:

Keyel Peter A.1,Loultcheva Lyussiena2,Roth Robyn2,Salter Russell D.3,Watkins Simon C.4,Yokoyama Wayne M.1,Heuser John E.25

Affiliation:

1. Howard Hughes Medical Institute, St Louis, MO 63110, USA

2. Department of Cell Biology and Physiology, Washington University in Saint Louis, St Louis, MO 63110, USA

3. Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA

4. Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15260, USA

5. Department of Cell Biology and Physiology, Washington University in Saint Louis, Box 8228, 660 S Euclid Avenue, St Louis, MO 63110, USA

Abstract

Cells survive exposure to bacterial pore-forming toxins, such as streptolysin O (SLO), through mechanisms that remain unclear. Previous studies have suggested that these toxins are cleared by endocytosis. However, the experiments reported here failed to reveal any evidence for endocytosis of SLO, nor did they reveal any signs of damage to endosomal membranes predicted from such endocytosis. Instead, we illustrate that SLO induces a characteristic form of plasma membrane blebbing that allows cells to shed SLO by the process known as ectocytosis. Specifically, ‘deep-etch’ electron microscopy of cells exposed to SLO illustrates that the toxin is rapidly sequestered into domains in the plasmalemma greatly enriched in SLO pores, and these domains bleb outwards and bud from the cell surface into the medium. Such ectocytosis is even observed in cells that have been chemically fixed before exposure to SLO, suggesting that it is caused by a direct physical action of the toxin on the cell membrane, rather than by an active cellular reaction. We conclude, therefore, that ectocytosis is an important means for SLO clearance and hypothesize that this is a primary method by which cells defend themselves generally against pore-forming toxins.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3