Active shape programming drives Drosophila wing disc eversion

Author:

Fuhrmann Jana F.12ORCID,Krishna Abhijeet123ORCID,Paijmans Joris4ORCID,Duclut Charlie45ORCID,Cwikla Greta2ORCID,Eaton Suzanne1236,Popović Marko234ORCID,Jülicher Frank234ORCID,Modes Carl D.123ORCID,Dye Natalie A.127ORCID

Affiliation:

1. Max-Planck Institute for Molecular Cell Biology and Genetics, MPI-CBG, Pfotenhauerstrasse 108, 01307 Dresden, Germany.

2. Cluster of Excellence Physics of Life, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany.

3. Center for Systems Biology, Pfotenhauerstrasse 108, 01307 Dresden, Germany.

4. Max-Planck Institute for Physics of Complex Systems, MPI-PKS, Nöthnitzer Str. 38, 01187 Dresden, Germany.

5. Laboratoire Physico-Chimie Curie, CNRS UMR 168, Institut Curie, Université PSL, Sorbonne Université, 75005 Paris, France.

6. Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany.

7. Mildred Scheel Nachwuchszentrum P2, Medical Faculty, Technische Universität Dresden, Dresden, Germany.

Abstract

How complex 3D tissue shape emerges during animal development remains an important open question in biology and biophysics. Here, we discover a mechanism for 3D epithelial shape change based on active, in-plane cellular events that is analogous to inanimate “shape programmable” materials, which undergo blueprinted 3D shape transformations from in-plane gradients of spontaneous strains. We study eversion of the Drosophila wing disc pouch, when the epithelium transforms from a dome into a curved fold, quantifying 3D tissue shape changes and mapping spatial patterns of cellular behaviors on the evolving geometry using cellular topology. Using a physical model inspired by shape programming, we find that active cell rearrangements are the major contributor to pouch eversion and validate this conclusion using a knockdown of MyoVI, which reduces rearrangements and disrupts morphogenesis. This work shows that shape programming is a mechanism for animal tissue morphogenesis and suggests that patterns in nature could present design strategies for shape-programmable materials.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3