An implantable ultrasound-powered device for the treatment of brain cancer using electromagnetic fields

Author:

Yang Yilin1ORCID,Hu Xiaoping1ORCID,Liu Yuxin1ORCID,Ouyang Bin1ORCID,Zhang Jiaxi1ORCID,Jin Huawei2ORCID,Yu Zhenhua2,Liu Ruiwei3ORCID,Li Zhe1ORCID,Jiang Lelun1ORCID,Lin Xudong1,Xu Bingzhe1ORCID

Affiliation:

1. Department of Biomedical Engineering, Sun Yat-sen University, Shenzhen Campus, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.

2. The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Rd., Yuexiu District, Guangzhou, Guangdong 510080, P.R. China.

3. School of Naval Architecture and Ocean Engineering, Guangzhou Maritime University, 101 Hongshan 3rd Road, Huangpu District, Guangzhou, Guangdong 510725, P.R. China.

Abstract

Brain tumors have been proved challenging to treat. Here, we present a promising alternative by developing an implantable ultrasound-powered tumor treating device (UP-TTD) that electromagnetically disrupts the rapid division of cancer cells without any adverse effects on normal neurons, thereby safely inhibiting brain cancer recurrence. In vitro and in vivo experiments confirmed the significant therapeutic effect of the UP-TTD, with ~58% inhibition on growth rate of clinical tumor cells and ~78% reduction of cancer area in tumor-bearing rats. This UP-TTD is wireless ultrasound-powered, chip-sized, lightweight, and easy to operate on complex surfaces, with a largely boosting therapeutic efficiency and reducing energy consumption. Meanwhile, various treatment parameters could be tuned from the UP-TTD without increasing its size or adding circuits on the integrated chip. The tuning process was simulated and discussed, showing an excellent agreement with the experimental data. The encouraging results of the UP-TTD raise the possibility of a new modality for brain cancer treatment.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3