Plasmonic Pd-Sb nanosheets for photothermal CH 4 conversion to HCHO and therapy

Author:

Wang Mengjun12ORCID,Jia Jun13ORCID,Meng Zhaodong14,Xia Jing5ORCID,Hu Xinyan1ORCID,Xue Fei1ORCID,Peng Huiping1,Meng Xiangmin5ORCID,Yi Jun146ORCID,Chen Xiaolan1,Li Jun1ORCID,Guo Yuzheng3ORCID,Xu Yong2ORCID,Huang Xiaoqing14ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

2. i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, China.

3. School of Electrical Engineering and Automation, Wuhan University, Hubei 430072, China.

4. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

5. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, China.

6. College of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China.

Abstract

Photothermal catalysis effectively increases catalytic activity by using the photothermal effect of metal nanomaterials; however, the combination of strong light absorption and high catalytic performance remains a challenge. Here, we demonstrate hexagonal ~5-nanometer-thick palladium antimony (chemical formula as Pd 8 Sb 3 ) nanosheets (NSs) that exhibit strong light absorption within full spectral and localized surface plasmon resonance (LSPR) effects in the visible region. Such LSPR features lead to strong photothermal effects, and Pd 8 Sb 3 NSs aqueous dispersion enables enhanced photothermal methane (CH 4 ) conversion to formaldehyde (HCHO) under full-spectrum light irradiation at 1.7 watts per square centimeter, leading to selectivity of ~98.7%, productivity of ~665 millimoles per gram of catalyst, ~700 times higher than that of Pd NSs. Mechanism investigations suggest that different radicals were generated on Pd 8 Sb 3 (·OH) and Pd NSs (·O 2 ), where Pd 8 Sb 3 NSs displays stronger adsorption strength to CH 4 and facilitates CH 4 oxidation to HCHO. Besides, the strong light absorption ability of Pd 8 Sb 3 NSs enables photothermal therapy for breast cancer.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3