Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance

Author:

Begušić Tomislav1ORCID,Gray Johnnie1ORCID,Chan Garnet Kin-Lic1ORCID

Affiliation:

1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Abstract

A recent quantum simulation of observables of the kicked Ising model on 127 qubits implemented circuits that exceed the capabilities of exact classical simulation. We show that several approximate classical methods, based on sparse Pauli dynamics and tensor network algorithms, can simulate these observables orders of magnitude faster than the quantum experiment and can also be systematically converged beyond the experimental accuracy. Our most accurate technique combines a mixed Schrödinger and Heisenberg tensor network representation with the Bethe free entropy relation of belief propagation to compute expectation values with an effective wave function–operator sandwich bond dimension >16,000,000, achieving an absolute accuracy, without extrapolation, in the observables of <0.01, which is converged for many practical purposes. We thereby identify inaccuracies in the experimental extrapolations and suggest how future experiments can be implemented to increase the classical hardness.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference48 articles.

1. S. Boixo S. V. Isakov V. N. Smelyanskiy H. Neven Simulation of low-depth quantum circuits as complex undirected graphical models. arXiv:1712.05384 [quant-ph] [preprint] (2017).

2. J. Chen F. Zhang C. Huang M. Newman Y. Shi Classical simulation of intermediate-size quantum circuits. arXiv:1805.01450 [quant-ph] [preprint] (2018).

3. C. Huang F. Zhang M. Newman J. Cai X. Gao Z. Tian J. Wu H. Xu H. Yu B. Yuan M. Szegedy Y. Shi J. Chen Classical simulation of quantum supremacy circuits. arXiv:2005.06787 [quant-ph] [preprint] (2020).

4. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor

5. Solving the Sampling Problem of the Sycamore Quantum Circuits

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3