Accurate global machine learning force fields for molecules with hundreds of atoms

Author:

Chmiela Stefan12ORCID,Vassilev-Galindo Valentin3ORCID,Unke Oliver T.14ORCID,Kabylda Adil3ORCID,Sauceda Huziel E.1256ORCID,Tkatchenko Alexandre3ORCID,Müller Klaus-Robert12478ORCID

Affiliation:

1. Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany.

2. Berlin Institute for the Foundations of Learning and Data – BIFOLD, Germany.

3. Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg.

4. Google Research, Brain Team, Berlin, Germany.

5. Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México C.P. 04510, Mexico.

6. BASLEARN - TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität Berlin, 10587 Berlin, Germany.

7. Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany.

8. Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Korea.

Abstract

Global machine learning force fields, with the capacity to capture collective interactions in molecular systems, now scale up to a few dozen atoms due to considerable growth of model complexity with system size. For larger molecules, locality assumptions are introduced, with the consequence that nonlocal interactions are not described. Here, we develop an exact iterative approach to train global symmetric gradient domain machine learning (sGDML) force fields (FFs) for several hundred atoms, without resorting to any potentially uncontrolled approximations. All atomic degrees of freedom remain correlated in the global sGDML FF, allowing the accurate description of complex molecules and materials that present phenomena with far-reaching characteristic correlation lengths. We assess the accuracy and efficiency of sGDML on a newly developed MD22 benchmark dataset containing molecules from 42 to 370 atoms. The robustness of our approach is demonstrated in nanosecond path-integral molecular dynamics simulations for supramolecular complexes in the MD22 dataset.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference92 articles.

1. Machine Learning Force Fields

2. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems

3. Exploring chemical compound space with quantum-based machine learning

4. Understanding deep learning (still) requires rethinking generalization

5. Z. Allen-Zhu Y. Li Y. Liang Learning and generalization in overparameterized neural networks going beyond two layers in Advances in Neural Information Processing Systems (Curran Associates Inc. 2019) pp. 6155–6166.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3