Optically controlling the competition between spin flips and intersite spin transfer in a Heusler half-metal on sub–100-fs time scales

Author:

Ryan Sinéad A.1,Johnsen Peter C.1,Elhanoty Mohamed F.2,Grafov Anya1,Li Na1,Delin Anna345,Markou Anastasios67,Lesne Edouard7,Felser Claudia7,Eriksson Olle25,Kapteyn Henry C.18,Grånäs Oscar2,Murnane Margaret M.1

Affiliation:

1. JILA, University of Colorado Boulder, 440 UCB, Boulder, CO 80309, USA.

2. Division of Materials Theory, Department of Physics and Astronomy, Uppsala University, Box-516, SE 75120, Sweden.

3. Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden.

4. Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.

5. Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121 Uppsala, Sweden.

6. Physics Department, University of Ioannina, 45110 Ioannina, Greece.

7. Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany.

8. KMLabs Inc., Boulder, CO 80301, USA.

Abstract

The direct manipulation of spins via light may provide a path toward ultrafast energy-efficient devices. However, distinguishing the microscopic processes that can occur during ultrafast laser excitation in magnetic alloys is challenging. Here, we study the Heusler compound Co 2 MnGa, a material that exhibits very strong light-induced spin transfers across the entire M-edge. By combining the element specificity of extreme ultraviolet high-harmonic probes with time-dependent density functional theory, we disentangle the competition between three ultrafast light-induced processes that occur in Co 2 MnGa: same-site Co-Co spin transfer, intersite Co-Mn spin transfer, and ultrafast spin flips mediated by spin-orbit coupling. By measuring the dynamic magnetic asymmetry across the entire M-edges of the two magnetic sublattices involved, we uncover the relative dominance of these processes at different probe energy regions and times during the laser pulse. Our combined approach enables a comprehensive microscopic interpretation of laser-induced magnetization dynamics on time scales shorter than 100 femtoseconds.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3