Ultrafast spin transfer and its impact on the electronic structure

Author:

Bobowski Kamil1ORCID,Zheng Xinwei1ORCID,Frietsch Björn1ORCID,Lawrenz Dominic1,Bronsch Wibke12ORCID,Gahl Cornelius1ORCID,Andres Beatrice1ORCID,Strüber Christian1ORCID,Carley Robert3ORCID,Teichmann Martin3ORCID,Scherz Andreas3ORCID,Molodtsov Serguei34,Cacho Cephise5ORCID,Chapman Richard T.5ORCID,Springate Emma5ORCID,Weinelt Martin1ORCID

Affiliation:

1. Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.

2. Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy.

3. European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany.

4. Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Str. 23, 09599 Freiberg, Germany.

5. Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.

Abstract

Optically induced intersite spin transfer (OISTR) promises manipulation of spin systems within the ultimate time limit of laser excitation. Following its prediction, signatures of ultrafast spin transfer between oppositely aligned spin sublattices have been observed in magnetic alloys and multilayers. However, it is known neither from theory nor from experiment whether the band structure immediately follows the ultrafast change in spin polarization or whether the exchange split bands remain rigid. We show that ultrafast spin transfer occurs even in ferromagnetic gadolinium metal. Charge transfer between localized surface and extended valence-band states leads to a decrease of the surface spin polarization. This synchronously alters the exchange splitting of the bulk valence bands during laser excitation. Moreover, the onset of demagnetization can be tuned by over 200 fs by changing the temperature-dependent spin mixing. Our results show a promising route to ultrafast control of the magnetization, widening the impact and applicability of OISTR.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3