Ag-doped non–imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide

Author:

Li Yesheng12ORCID,Xiong Yao3ORCID,Zhai Baoxing4,Yin Lei1ORCID,Yu Yiling1ORCID,Wang Hao1,He Jun14ORCID

Affiliation:

1. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physical and Technology, Wuhan University, Wuhan 430072, China.

2. Suzhou Institute of Wuhan University, Suzhou 215123, China.

3. School of Science, Wuhan University of Technology, Wuhan 430070, China.

4. Institute of Semiconductors, Henan Academy of Sciences, Zhengzhou 450046, China.

Abstract

Memristors are considered promising energy-efficient artificial intelligence hardware, which can eliminate the von Neumann bottleneck by parallel in-memory computing. The common imperfection-enabled memristors are plagued with critical variability issues impeding their commercialization. Reported approaches to reduce the variability usually sacrifice other performances, e.g., small on/off ratios and high operation currents. Here, we demonstrate an unconventional Ag-doped nonimperfection diffusion channel–enabled memristor in van der Waals indium phosphorus sulfide, which can combine ultralow variabilities with desirable metrics. We achieve operation voltage, resistance, and on/off ratio variations down to 3.8, 2.3, and 6.9% at their extreme values of 0.2 V, 10 11 ohms, and 10 8 , respectively. Meanwhile, the operation current can be pushed from 1 nA to 1 pA at the scalability limit of 6 nm after Ag doping. Fourteen Boolean logic functions and convolutional image processing are successfully implemented by the memristors, manifesting the potential for logic-in-memory devices and efficient non–von Neumann accelerators.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3