On the nature of decoherence in quantum circuits: Revealing the structural motif of the surface radicals in α-Al 2 O 3

Author:

Un Sun1ORCID,de Graaf Sebastian2ORCID,Bertet Patrice3ORCID,Kubatkin Sergey4ORCID,Danilov Andrey4ORCID

Affiliation:

1. Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS UMR 9198, Gif-sur-Yvette F-91198, France.

2. National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.

3. Quantronics Group, SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.

4. Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden.

Abstract

Quantum information technology puts stringent demands on the quality of materials and interfaces in the pursuit of increased device coherence. Yet, little is known about the chemical structure and origins of paramagnetic impurities that produce flux/charge noise that causes decoherence of fragile quantum states and impedes the progress toward large-scale quantum computing. Here, we perform high magnetic field electron paramagnetic resonance (HFEPR) and hyperfine multispin spectroscopy on α-Al 2 O 3 , a common substrate for quantum devices. In its amorphous form, α-Al 2 O 3 is also unavoidably present in aluminum-based superconducting circuits and qubits. The detected paramagnetic centers are immanent to the surface and have a well-defined but highly complex structure that extends over multiple hydrogen, aluminum, and oxygen atoms. Modeling reveals that the radicals likely originate from well-known reactive oxygen chemistry common to many metal oxides. We discuss how EPR spectroscopy might benefit the search for surface passivation and decoherence mitigation strategies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference59 articles.

1. Observation of Classical-Quantum Crossover of 1/f Flux Noise and Its Paramagnetic Temperature Dependence

2. T. Lanting M. H. Amin C. Baron M. Babcock J. Boschee S. Boixo V. N. Smelyanskiy M. Foygel A. G. Petukhov Probing environmental spin polarization with superconducting flux qubits (2020); http://arxiv.org/abs/2003.14244.

3. Magnetism in SQUIDs at Millikelvin Temperatures

4. 1/fnoise: Implications for solid-state quantum information

5. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3