An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys )

Author:

Tomasso Antonio12345ORCID,Koopmans Tim34ORCID,Lijnzaad Philip6ORCID,Bartscherer Kerstin1234ORCID,Seifert Ashley W.5ORCID

Affiliation:

1. Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany.

2. Cells in Motion Cluster of Excellence—International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany.

3. Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands.

4. Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany.

5. Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA.

6. Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, Netherlands.

Abstract

Although most mammals heal injured tissues and organs with scarring, spiny mice ( Acomys ) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring ( Mus ) and regenerating ( Acomys ) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in Acomys shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3