High-throughput synthesis provides data for predicting molecular properties and reaction success

Author:

Götz Julian1ORCID,Jackl Moritz K.1,Jindakun Chalupat1ORCID,Marziale Alexander N.2,André Jérôme2,Gosling Daniel J.2ORCID,Springer Clayton3ORCID,Palmieri Marco2,Reck Marcel2ORCID,Luneau Alexandre2,Brocklehurst Cara E.2ORCID,Bode Jeffrey W.1ORCID

Affiliation:

1. Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.

2. Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.

3. Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA 02139, USA.

Abstract

The generation of attractive scaffolds for drug discovery efforts requires the expeditious synthesis of diverse analogues from readily available building blocks. This endeavor necessitates a trade-off between diversity and ease of access and is further complicated by uncertainty about the synthesizability and pharmacokinetic properties of the resulting compounds. Here, we document a platform that leverages photocatalytic N-heterocycle synthesis, high-throughput experimentation, automated purification, and physicochemical assays on 1152 discrete reactions. Together, the data generated allow rational predictions of the synthesizability of stereochemically diverse C-substituted N-saturated heterocycles with deep learning and reveal unexpected trends on the relationship between structure and properties. This study exemplifies how organic chemists can exploit state-of-the-art technologies to markedly increase throughput and confidence in the preparation of drug-like molecules.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference44 articles.

1. Evolution of Novartis’ Small Molecule Screening Deck Design

2. Streamlining bioactive molecular discovery through integration and automation

3. Integration of Lead Discovery Tactics and the Evolution of the Lead Discovery Toolbox

4. “Exscientia scored the largest AI deal with a Big Pharma to date — But it’s just getting started ” PharmaVoice 4 March 2022; www.pharmavoice.com/news/exscientia-scored-the-largest-ai-deal/619844/.

5. “High-throughput screening: Using a more intelligent approach for hit discovery ” Drug discovery Technology Networks 28 May 2021; www.technologynetworks.com/drug-discovery/articles/high-throughput-screening-using-a-more-intelligent-approach-for-hit-discovery-349022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3