Stochastic neuro-fuzzy system implemented in memristor crossbar arrays

Author:

Shi Tuo12ORCID,Zhang Hui2,Cui Shiyu2,Liu Jinchang2,Gu Zixi2,Wang Zhanfeng3ORCID,Yan Xiaobing3ORCID,Liu Qi4ORCID

Affiliation:

1. State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.

2. Research Center for Intelligent Computing Hardware, Zhejiang Laboratory, Hangzhou 311122, China.

3. Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding 071002, P. R. China.

4. Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China.

Abstract

Neuro-symbolic artificial intelligence has garnered considerable attention amid increasing industry demands for high-performance neural networks that are interpretable and adaptable to previously unknown problem domains with minimal reconfiguration. However, implementing neuro-symbolic hardware is challenging due to the complexity in symbolic knowledge representation and calculation. We experimentally demonstrated a memristor-based neuro-fuzzy hardware based on TiN/TaO x /HfO x /TiN chips that is superior to its silicon-based counterpart in terms of throughput and energy efficiency by using array topological structure for knowledge representation and physical laws for computing. Intrinsic memristor variability is fully exploited to increase robustness in knowledge representation. A hybrid in situ training strategy is proposed for error minimizing in training. The hardware adapts easier to a previously unknown environment, achieving ~6.6 times faster convergence and ~6 times lower error than deep learning. The hardware energy efficiency is over two orders of magnitude greater than field-programmable gate arrays. This research greatly extends the capability of memristor-based neuromorphic computing systems in artificial intelligence.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3